Iterative methods for solving non linear Fokker-Planck equation

نویسنده

  • Sh. Sadigh Behzadi e
چکیده مقاله:

این مقاله چکیده ندارد

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fokker-Planck equation

In 1984, H. Risken authored a book (H. Risken, The Fokker-Planck Equation: Methods of Solution, Applications, Springer-Verlag, Berlin, New York) discussing the Fokker-Planck equation for one variable, several variables, methods of solution and its applications, especially dealing with laser statistics. There has been a considerable progress on the topic as well as the topic has received greater...

متن کامل

The Fokker-Planck Equation

Stochastic differential equations (SDE) are used to model many situations including population dynamics, protein kinetics, turbulence, finance, and engineering [5, 6, 1]. Knowing the solution of the SDE in question leads to interesting analysis of the trajectories. Most SDE are unsolvable analytically and other methods must be used to analyze properties of the stochastic process. From the SDE, ...

متن کامل

Fokker-Planck Equation

The Langevin equation approach to the evolution of the velocity distribution for the Brownian particle might leave you uncomfortable. A more formal treatment of this type of problem is given by the Fokker-Planck equation. We can either formulate the question in terms of the evolution of a nonstationary probability distribution from a defined initial condition, or in terms of the evolution of th...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  143- 156

تاریخ انتشار 2011-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023